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ADDENDUM 

Pattern selectivity and binary-synapse neural networks 

R W Penney and D Shemngton 
University of Oxford. Depanment of physic& Theoretical Physics, 1 Keble Road, Oxford 
OX1 3NP, UK 

Received 27 May 1993 

Abstract. Using the Rau. Wong and Sherrington model of the storage of a pair of comlated 
patterns by an optimized synaptic neural network, we argue that all maximally-stable neural 
networks will show high selectivity between correlated memorized patterns. The dilute-retrieval 
phase diagram is calculated spci6cally for a network with binary-valued synapses. and is shown 
to be qualitatively identical to that for the spherically-constmid synapses of the original work. 

1. Introduction 

In attempting to addrzss the relevant question of the response of neural memories to 
stochastically correlated pieces of information, particularly in terms of their ability to 
discriminate between them, Rau, Wong and Shenington (1992, 1993, to be referred to 
as RWS) proposed a model in which two correlated pattems were stored amidst a large 
number of background memories. They considered three types of leaming rules for the 
synapses (all achieved by optimization of appropriate performance measures), the Hebb, 
pseudo-inverse and maximally-stable rules. In all cases the synaptic weights were permitted 
maximum freedom, subject only to a normalization constraint. The selectivity predicted for 
the Hebb and pseudo-inverse rules was compatible with expectations, but the maximally 
stable network (MSN) was predicted, counter-intuitively, to show confused retrieval attractors 
only for small pattem correlation, and within very narrow ranges of total memory loading. 
In this comment we will indicate that the absence of confusion between the two correlated 
pattems when strongly correlated, is a feature to be expected of a11 types of MSN, whatever 
the nature of their synapses. As a demonstration of this, we will briefly present results for a 
network with binary-valued synapses, representing a highly local synaptic constraint which 
contrasts strongly with that used by Rau et al. 

2. Overview of the model 

We consider a large system of N formal neurons, Si E ( f l ) ,  i E (1, . . . , N), sparsely 
l i e d  by asymmetric synapses, Jil ,  and having discrete-time dynamics Si(? + 1) = 
sgn(C112 cj J i j S j ( f ) ) .  where C (6 N )  is the average connectivity of the network. In 
order to simplify the retrieval dynamics, we idealise to an extremely diluted netwok having 
In N >> C >> 1 (Derrida et a1 1987). For the maximally-stable d e ,  we require aC + 2 
random neuron-states, S: E {&I) i~ E 11, ..., (aC + 2)). to be stable fixed-points of 
the update rule, such that all aligning fields, hp = X I  e” I J .  I1 ,e”, j exceed a positive 
threshold, K ,  understood to be maximized for the given loading, a. The model of RWS 
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considers patterns LL = 1,2 to be mutually correlated, but uncorrelated with the remaining, 
mutually uncorrelated, memories. The two special memories are used to partition the C 
neurons feeding a given site, i, such that S = ( j I .$ = f / ]  and 2) = { j I {,! = -{/],which 
quantities relate to the pattern correlation, Q ,  as follows: 

R W Penney ond D Sherrington 

For each of these two sets of neurons, retrieval order parameters and contributions to the 
pattern stability fields are defined 

Confused retrieval of the correlated pattems would be signalled by m, > 0 and md = 0, 
whilst perfect retrieval is implied by m, = md = 1. The aligning-fields of the two special 
memories are given by 

A' = [a& f G A d ]  A: = *[&Ax - a A d ]  (2.3) 

according to whether the target neuron is with the set S (A:) or 2) (A:) of a subsequent 
neuron. Each of these stabilities, together with those of all background pattems, must exceed 
K, for an MSN. In the extremely diluted network that is assumed, the retrieval dynamics, for 
sequential spin-update, may be written as a flow 

dependent on pattern aligning field distributions ps/d(Ar, Ad), expressions for which may 
be derived using replica mean-field theory after specifying the nature of the synapses. 

The flow (2.4) is expened to exist in a number of forms, and transitions between these 
occur for various network loadings, U, and correlations, Q .  The four phase-boundaries thus 
defined are determined by changes in stability of the non-retrieval fixed-point, m, = md = 0, 
and of fixed-points on the m, axis. Details of these conditions can be found in Rau et ol 
1993. 

3. General results 

By considering the flow (2.4) in the stmng correlation limit Q + 1 (Q+ + 1, Q- + 0). 
the absence of confused attractors, in maximally stable networks, can be demonstrated 
(Here, Q- is taken as being of order CO, i.e. the number of sites on which the two special 
pattems differ is still extensive.) Fixed-points of the flow that lie on them, axis must satisfy 
the condition 

in which the short-hand notation (f(A,, I\d))'/d = SdA, d&pl,d(&, Ad) f(ht, Ad) 
has been used. By definition of an MSN, ps(A.,,Ad) = 0 VAS < K, implying that 
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in the limit Q + 1. the non-zero solution of (3.1) that is stable with respect to small 
fluctuations along the m, axis, m*, must approach m* = 1. Moreover, the evolution of 
md around this fixed point can be characterized readily. By identifying the lower bound of 
[ m A s m s  + E A d m d )  within the domain where pd(h,, Ad) > 0, one finds that 

- 
dmd 2 K 

- P m d [ x J 2 ( 1 - Q + m * Z )  dl 

implying that this point is manifestly unstable with respect to increasing lmdl provided 
K > ,I%,/-. Given that (1 - Q+m*') + 0 as Q + 1, it is seen that this root 
of the flow cannot be a confused attractor unless K + 0, which is not appropriate for a 
maximally stable network within its storage capacity limit. 

By considering the number of inflection points of the function &(m) for m E (0, I), 
one may show that for any distribution p(A,) such that &A,) = 0 VAS < K > 0, 
there are no more than two non-Zen, roots of m = $ ( m )  within (0, 1). This implies 
that no confused attractors can exist elsewhere on the m, axis, since any other finite root is 
automatically unstable along the m, direction under the flow. This observation is compatible 
with the forms of flow predicted to exist towards Q = I by Rau et al. Therefore, it would 
appear that dilute maximally-stable networks, in generality, entirely avoid confusion for pairs 
of strongly correlated pattems, and that the looseness of the spherical synapse-constraint 
(E. JZ = C V i )  used in RWS is not central to achieving this selectivity. 

More generally, for the whole range of Q, examination of the self-consistency of 
permutations of the phase boundaries pertinent to the model of RWS, together with the 
inherent properties of the flow (2.4). leads us to suspect that a unique topology of dilute- 
retrieval phase diagram (in a, Q space) is possible for networks which avoid confusion 
towards strong correlation (i.e. that topology found by Rau et af). Moreover, this procedure 
suggests that phases exhibiting confused attractors towards weak correlation (Q + 0) are 
inevitable, despite the surprising contrast with their absence for greater pattem similarity. 

I I J  

4. The binary-synapse network 

In support of the implications of the previous section, we briefly consider the RWS model 
for networks with binary-valued synapses, Jij E ( f l ] .  The calculation of p,/d(A,, Ad) 
may be effected as a generalization of the methods of Rau et al (1993) and Gardner (1989). 
However, the peculiarities of the binary model's weight-space, as compared with that of the 
spherical model, mean that cannot be expressed in as concise a form as was possible for 
the original model of RWS (cf Penney and Shenington 1993). In contrast to the combination 
of &-functions and Gaussian tails shown by the spherical model, ps/d here has the form 

R s / d  being defined by 
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Figure 1. The dilute renieval phase diagram for the b i i - s y n a p s e  nehvork stoMg W O  

correlated pattems. The various types of revieval flow an labelled in the notation of Rau et 01. 
The confused phases (BC and TA) are show magnified in the p p h  on lk right. 

in which 4 is an order parameter of the mean-field theory, determined by the network 
loading (I, exactly as for the binary perceptron storing uncorrelated pattems (Krauth and 
M6zard 1989). Using these distributions in place of the original expressions, we may seek 
solutions of the phase-boundary conditions (Rau er a/ 1993), a somewhat weighty numerical 
task that leads to a phase diagram shown in figure 1. 

It is seen that imposing binary synapses on a maximally stable network does not 
qualitatively alter its dilute retrieval phase diagram for this model (or indeed for the retrieval 
of uncorrelated patterns, according to similar comparisons), and regions of parameter space 
where confused attractors exist are seen to be small and localized near Q = 0, as found by 
RWS. 

5. Conclusion 

A simple analysis of the maximally stable network storing strongly correlated pattems. in the 
regime of the model of Rau, Wong and Shemngton, has shown that high pattern selectivity 
is to be expected of all large MSNS storing two correlated pattems against an extensive 
background of uncorrelated pattems. This assertion is supported by calculations applied to 
a binary-synapse network, whose dilute-retrieval phase diagram has been presented. 

In addition, we have considered a toy model of pattern selectivity, in which all (IC stored 
patterns are mutually correlated (by biasing them according to p(c,?) = $(l +m#')). The 
synapses of this model are subject to a spherical constraint, as for the original model of RWS, 
and chosen according to the maximally stable rule (cf Gardner 1988). This model shows 
a qualitatively identical phase diagram, also with tiny confused phases, and an absence of 
confusion under conditions of strong correlation. Therefore, it would appear that exacting 
separation of correlated memories is a feature to be expected of all types of MSN, under 
very general conditions. 

The issue of extreme pattern correlation, for which Q- - C-l with 0 < x < 1, has not 
b e n  addressed explicitly here, but the analysis of section 2 would suggest that provided 
positive stability can be granted to all panems by a network, confused attractors are not to 
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be expected. It is in the abilities of differing species of network to achieve this stabilization 
that we expect the detailed nature of the synapses to show greatest effect. 

(This work is anticipated to form part of the DPhil thesis of RWP, where more details 
of the methods and analyses, summarized here, may be found.) 
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